Lagrangian Formalism in Perturbed Nonlinear Klein-Gordon Equations
نویسنده
چکیده
We develop an alternative approach to study the effect of the generic perturbation (in addition to explicitly considering the loss term) in the nonlinear Klein-Gordon equations. By a change of the variables that cancel the dissipation term we are able to write the Lagrangian density and then, calculate the Lagrangian as a function of collective variables. We use the Lagrangian formalism together with the Rice Ansatz to derive the equations of motion of the collective coordinates (CCs) for the perturbed sine-Gordon (sG) and φ4 systems. For the N collective coordinates, regardless of the Ansatz used, we show that, for the nonlinear Klein-Gordon equations, this approach is equivalent to the Generalized Traveling Wave Ansatz (GTWA).
منابع مشابه
Applications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations
In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...
متن کاملExact Solution for Nonlinear Local Fractional Partial Differential Equations
In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...
متن کاملSolitary Waves for Klein-Gordon-Schrödinger Equations with Perturbed Term
In this paper we present numerical solutions by the fourth order implicit finite difference scheme to nonlinear Klein-Gordon-Schrödinger equations with a perturbed term. We discuss the accuracy and stability of the scheme. Numerical tests are used to assess the performance of the scheme.
متن کاملAnalytical solutions for the fractional Klein-Gordon equation
In this paper, we solve a inhomogeneous fractional Klein-Gordon equation by the method of separating variables. We apply the method for three boundary conditions, contain Dirichlet, Neumann, and Robin boundary conditions, and solve some examples to illustrate the effectiveness of the method.
متن کاملSOLVING NONLINEAR KLEIN-GORDON EQUATION WITH A QUADRATIC NONLINEAR TERM USING HOMOTOPY ANALYSIS METHOD
In this paper, nonlinear Klein-Gordon equation with quadratic term is solved by means of an analytic technique, namely the Homotopy analysis method (HAM).Comparisons are made between the Adomian decomposition method (ADM), the exact solution and homotopy analysis method. The results reveal that the proposed method is very effective and simple.
متن کامل